

For

Electronic Snap Circuits[®] Model SC-300R/500R/750R

Hands-on Program for Basic Electricity and Electronics

Prepared by the Educational Division of Elenco[®] Electronics, Inc. Wheeling, IL 60090 U.S.A.

Copyright © 2008 Elenco® Electronics, Inc.

TABLE OF CONTENTS

2

2

Snap Circuits [®] Project Manuals	
Preface	

PART I (All models)

Chapter 1: Basic Compo	onents
& Circuits	3
1-1 Electricity	4
1-2 Wires	5
1-3 Batteries	6
1-4 The Switch	7
1-5 The Lamp	7, 8
1-6 The Base Grid	8-10
1-7 Series and Parallel Circuits	10-12
1-8 Short Circuits	13
1-9 Solder	13
1-10 Schematics	14
Summary & Quiz	15

Chapter 2: Motors & Electricity

lectricity	16
2-1 Motors	17, 18
2-2 Motor Circuits	18-21
2-3 Fuses	21
2-4 Your Electric Company	22
2-5 Static Electricity	23
2-6 Types of Lamps	24
2-7 Types of Switches	24
2-8 Electricians	24
Summary & Quiz	25

Chapter 3: Resistance

3-1 Resistors	27
3-2 LEDs	27-29
3-3 Resistors in Series & Parallel	29, 30
3-4 Resistance	31
3-5 The Adjustable Resistor	31, 32
3-6 The Photo Resistor	32, 33
3-7 Resistance of Water	33, 34
3-8 Introduction to Logic	34
3-9 Digital Electronics	35
Summary & Quiz	36

Chapter 4: Capacitors

38-40
40, 41
42, 43
43

Chapter 5: Transistors	44
5-1 More About LEDs	45
5-2 Transistors	46
5-3 Transistor Basics	47, 48
5-4 More Transistor Circuits	48-50
5-5 Human Transistor	51
5-6 Motor as Generator	51
5-7 Microphone	52
Summary & Quiz	53
Chapter 6: Oscillators &	
Electronic Sound	54
6-1 Electronic Sound	54 55
6-2 Oscillators	56 57
6-3 Whistle Chip	57
6-4 Oscillator Circuits	58-60
Summary & Quiz	60
Chapter 7	
Chapter 7:	
Chapter 7: Integrated Circuits	61
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits	61 62, 63
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects	61 62, 63
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs	61 62, 63 64-66
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Quiz	61 62, 63 64-66 67
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Quiz	61 62, 63 64-66 67
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Quiz Chapter 8: Electromagn	61 62, 63 64-66 67
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Ruiz Chapter 8: Electromagn & Radio	61 62, 63 64-66 67 etism 68
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Quiz Chapter 8: Electromagn & Radio 8-1 AC	61 62, 63 64-66 67 etism 68 69
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Quiz Chapter 8: Electromagn & Radio 8-1 AC 8-2 Transformers	61 62, 63 64-66 67 etism 68 69 69, 70
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Quiz Chapter 8: Elestromagn & Radio 8-1 AC 8-2 Transformers 8-3 Inductance & Antennas	61 62, 63 64-66 67 etism 68 69 69, 70 70, 71
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Quiz Chaster 8: Electromagn & Radis 8-1 AC 8-2 Transformers 8-3 Inductance & Antennas 8-4 Radio	61 62, 63 64-66 67 etism 68 69 69, 70 70, 71 71, 72
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Quiz Chaster 8: Elestromagn 8 Radus 8-1 AC 8-2 Transformers 8-3 Inductance & Antennas 8-4 Radio 8-5 Radio Circuits	61 62, 63 64-66 67 etism 68 69 69, 70 70, 71 71, 72 72, 73
Chapter 7: Integrated Circuits 7-1 The ICs in Snap Circuits 7-2 Description of all projects using ICs Summary & Rauiz Chapter 8: Electromagn & Radio 8-1 AC 8-2 Transformers 8-3 Inductance & Antennas 8-4 Radio 8-5 Radio Circuits Summary & Quiz	61 62, 63 64-66 67 etism 68 69 69, 70 70, 71 71, 72 72, 73 73

PART II

6

37

(only used in Models SC-500R & SC-750R)

Chapter 9:				
Meters, Transformers				
& FM Radio				
9-1 Meters				
9-2 Meter Circuits				
0.0 Mana Alassi Tasa fama ang				

9-3 More About Transformers	78-80
9-4 Transformers in Oscillators	80-83
9-5 More About FM Radio	83, 84
9-6 When Wires are not Wires	84
Summary & Quiz	85

74 75

76-78

Chapter 10: Diodes & Applications	86
10-1 More About Diodes	86-89
10-2 Digital Displays	89-91
10-3 Recording IC	92, 93
Summary & Quiz	94
Chapter 11:	05
11-1 Relays	95-99
11-2 Silicon Controlled Rectifiers	99-101
11-3 Voltage Dividers	
& Current Dividers	101, 102
Summary & Quiz	102
PART III Only used in Model Se	C-750R)
Chapter 12:	
Electromagnetism	103
12-1 Magnetism	104
12-2 An Electronic Magnet	105
12-3 Magnetic Fields	100-109
12-5 The Anti-Capacitor 1	110, 111
12-6 More About Motors	112
Summary & Quiz	113
Chapter 13: Sup Power	- 11/
13-1 Born in the Space Program 1	114
13-2 How Your Solar Cell Works	115-117
13-3 More Solar Cell Circuits	117-119
13-4 Our Solar Future	120
Summary & Quiz	121
Chapter 14: More Circ	uits &
New Ways to Look at The	m 122
14-1 Vibration Switch	122
14-2 Other Applications 1	125, 126
Computer Interface	127-130
Summary & Quiz	131
Summary of	
Components	132-134
Definition of Terms	135-137
For Further Reading	137

THE SNAP CIRCUITS" PROJECT MANUALS

The Snap Circuits[®] project manuals include lots of useful information in addition to the projects themselves, as listed below. The project manuals summarize much of the lesson in the Student Guide while adding troubleshooting information.

The Model SC-300R contains two project manuals, the Model SC-500R contains three, and the Model SC-750R contains four. Note that the parts lists and information about the parts is spread across all the project manuals. The DO's and DON'Ts of Building Circuits section of the manual with the highest numbered projects is the most thorough.

First Project Manual contains:

- 1. Parts List (partial, continued in other manuals)
- 2. **How To Use It** brief description of how to make connections and understand the circuit drawings.
- About Your Snap Circuits[®] Parts brief description of what each component does (partial, continued in other manuals).
- DO's and DON'Ts of Building Circuits brief but important guidelines for building circuits (additional guidelines are in other manuals).
- Basic & Advanced Troubleshooting systematic testing procedure for identifying damaged parts (continued in other manuals).
- 6. Project Listing
- 7. Projects 1-101

Much of the text in all chapters is color-coded green and blue so that instructors can easily adapt the course based on the skills and interests of the students. The orange boxes are more advanced material while the brown boxes are considered additional/background material, either can generally be omitted without a significant impact on the course.

Other Project Manuals contain:

- 1. Parts List (partial, continued from first manual)
- 2. How To Use It blief description of how to make connections and understand the circuit drawings.
- About Your Snap Circuits[®] Parts brief description of what each component does (partial, continued from first manual).
- DO's and DON'Ts of Building Circuits brief but important guidelines for building circuits.
- Basic & Advanced Troubleshooting systematic testing procedure for identifying damaged parts (continued from first manual).
- 8. Project Listing
- 7. Projects 102 and up

Preface

This booklet is an introduction to the exciting world of electronics. Following the "Learn by Doing®" concept, electronics will be easy to understand by using Snap Circuits to actually build circuits as you learn about them. This booklet emphasizes the practical applications of electronics, without bogging down in mathematics.

Why learn about electronics? Electronics plays an important and increasing role in our everyday lives,

and so some basic knowledge of it is good for everyone. Learning about it teaches how to do scientific investigation, and the projects develop basic skills needed in today's world.

The first pages of the Snap Circuits[®] project manuals contain a brief description of the parts in Snap Circuits[®], along with brief guidelines for building circuits.

- If you have the SC-300R version, you may wish to purchase the UC-50 Upgrade Kit to continue to Part II
 of this manual. The UC-70 Upgrade Kit will allow you to continue to Parts II & III of this manual.
- If you have the SC-500R version, you may wish to purchase the UC-80 Upgrade Kit to continue to Part III
 of this manual. Upgrade kits can be purchased online: www.snapcircuits.net

CHAPTER 1: BASIC COMPONENTS & CIRCUITS

CHAPTER 2: MOTORS & ELECTRICITY

In this chapter you will learn about generators and motors. A generator uses mechanical motion to create electricity and a motor uses electricity to create mechanical motion. This statement may not seem important to you but it is actually the foundation of our present society. Nearly all of the electricity used in our world is produced at enormous generators driven by steam or water pressure. Wires are used to efficiently transport this energy to homes and businesses where it is used. Motors convert the electricity back into mechanical form to drive machinery and appliances. The most important aspect of electricity in our society - more important than the benefits of the Internet - is that it allows energy to be easily transported over distances.

Note that "distances" includes not just large distances but also tiny distances. Try to imagine a plumbing structure of the same complexity as the circuitry inside a portable radio - it would have to be

large because we can't make water pipes so small. Electricity allows complex designs to be made very small.

2-1 Motors

Water flowing under pressure in a pipe or a fastmoving stream can be used to turn a paddlewheel. If the paddlewheel was linked to a fan blade then you could use the water pressure to turn the fan, perhaps to cool yourself on a hot day. If the water was flowing very fast due to high pressure, then you could get the fan moving fast enough it might create a strong airflow like a propeller on a plane.

A similar thing happens in a motor, with electricity instead of water. A motor converts electricity into mechanical motion.

Introducing New Parts

Snap Circuits[®] includes one motor, shown here with its symbol. Snap Circuits[®] also includes a fan, which is used with the motor. An electric current in the motor will turn the shaft and the motor blades, and the fan blade if it is on the motor.

Motor Symbol

Motor (M1)

Fan Blade

How does electricity turn the shaft in the motor? The answer is magnetism. Electricity is closely related to magnetism, and an electric current flowing in a wire has a magnetic field similar to that of a very, very tiny magnet. Inside the motor is a coil of wire with many loops, if a large electric current flows through the loops the magnetic effects become concentrated enough to move a small magnet. The motor also has a small magnet, on a shaft. When electricity moves the magnet, the shaft spins. If the fan is on the motor shaft then its blades will create airflow.

Experiments

Consider this circuit (which is project 2):

When the switch is on, current flows from the batteries through the motor making it spin. The fan blades will force air to move past the motor. Be careful not to touch the motor or fan when it is spinning at high speed. Motors are used in all electric powered equipment requiring rotary motion, such as a cordless drill, electric toothbrush, and toy trains. An electric motor is much easier to control than gas or diesel engines.

The electromagnetic effect described above also works in reverse - spinning a magnet next to a coil of wire will produce an electric current in that wire. This is what happens in a **generator**, which uses mechanical motion to create electricity. In an electric power plant, high-pressure water (from a dam) or steam (heated by burning oil or coal) is used to spin a paddlewheel linked to magnets. The magnets create an electric current in a coil of wire, which is used to power our cities.

In theory, you could connect your Snap Circuits[®] motor directly to the 2.5V lamp and spin the fan blade with your fingers to light the lamp. In reality, it would be impossible for you to spin the motor fast

2-2 Motor Circuits

enough to produce enough current to get even a glimmer of light from the lamp.

To summarize, a generator uses mechanical motion to create electricity and a motor uses electricity to create mechanical motion.

Experiments

Consider this circuit (which is project 5):

If the switch is on, the lamp will light and the fan will spin.

The lamp and motor are in series, so the voltage from the batteries will get divided between them. In this circuit more of the voltage will be used at the lamp than at the motor.

If the fan was not on the motor then the motor would spin much faster but the lamp would not be as bright. The motor needs more voltage to spin faster, so there is less voltage available to light the lamp.

Consider this circuit (which is project 6):

If the switch is on, the lamp will light and the fan will spin. This circuit has the lamp and motor in parallel, so the full voltage from the batteries would be applied to both. So the fan would spin faster than for the circuit in project 5, which divided the battery voltage between the lamp and motor.

5-7 Microphone

Introducing New Parts

This part acts like a resistor that changes when exposed to sound waves. This change in resistance will change the current through a circuit when sound waves apply pressure to its surface. This action is similar to squeezing a garden hose and watching the water through it decrease. The side with a "+" mark should always be placed toward the higher voltage.

Experiments

Summary

Summary of Chapter 5:

- 1. The resistance of semiconductors may be controlled by their operating conditions.
- 2. Semiconductors have a turn-on level (0.7V for silicon), after which the resistance becomes very low in one direction.
- 3. Transistors have three connection points, called the emitter, base, and collector.
- 4. The transistor is a current amplifier, it uses a small amount of current to control a large amount of current.
- 5. When a small current flows into the base and out of the emitter in an NPN transistor, a larger current flows into the collector and out of the emitter. In a PNP transistor, current flows into the emitter and out of the base and collector.
- A microphone is a resistor that changes when exposed to sound. This change in resistance will change the current through a circuit when sound waves apply pressure to its surface.

Quiz

Chapter 5 Practice Problems

- 1. In a transistor, the _____ will have the most current flowing through it.
 - A. Emitter C. Collector
 - B. Base D. Vacuum tube
- 2. The following are advantages of transistors except . . . A. they can be miniaturized.
 - B. they can amplify signals.
 - C. their resistance can be changed by adjusting the voltage in the circuit.
 - D. it has zero resistance under certain operating conditions.
- 3. Which circuit will light the LED?
 - - - D All three.

В

4. Which circuit will light the lamp?

D All three.

Answers: 1. A, 2. D, 3. B, 4. B

-53-

CHAPTER 6: OSCILLATORS & ELECTRONIC SOUND

Your electronic stereo and radio are powered by electricity and play music, so how does electricity make sound? In this chapter you will find out. You will also learn about oscillator circuits, and build some simple ones using snap circuits.

Oscillators are used in all radios, TVs, and electronic communications equipment to set the transmitter or receiver frequency. Different types of oscillators are used as timing references in computers and almost all complex electronic products. It would be hard to

count how many oscillator circuits are in your home since there are different types and they can be hard to identify.

Oscillators can be among the most difficult electronic circuits to design, due to the tight requirements placed on them by today's communications technology. They usually don't use a lot of components, but the way they are arranged is complex and often difficult to analyze. But they are fun to learn about.

-54-

7-2 Integrated Circuit Projects

Integrated circuits are used in most electronic products; there are probably more than a thousand throughout your home. The range and uses of ICs available is hard to imagine.			parts described in th the microphone and description of each them in more detail:	ne preceding chapters, such as photoresistor. Here is a short , the project manuals explain
Although Snap Circuits [®] contains only five IC modules, more than half of the projects use at least one. There are many more examples of using the			Suggested Proje 119, 158, 178, 20 255, 272, and 297	cts: 38, 51, 58, 61, 81, 83, 02, 237, 238, 242, 245, 250,
Project 3:	Uses the music IC with the whistle chip as a vibration sensor.		Projects 38-39:	Uses the alarm IC to control the music IC. An example of a periodic (repeating) signal.
Project 4:	Uses the music IC with the whistle chip as a vibration sensor.		Projects 40-44:	Uses the motor and music IC to control the alarm IC siren sounds.
Project 10:	Combines the sound effects of the music and space war ICs.		Project 45:	Uses the photoresistor, music IC, and alarm IC to control an LED.
Project 15:	Uses the music IC as a doorbell.		Project 46:	Makes one of the alarm IC siren sounds.
Project 16:	Uses the music IC as an alarm.		Project 51:	The alarm IC uses the
Project 17:	sounds.	X		photoresistor to sense reflections from a lamp.
Project 18:	Makes one of the alarm IC siren sounds.		Project 52:	The alarm IC uses the photoresistor to sense reflections from a lamp.
Project 19:	This is the standard circuit using the space war lo		Project 53:	Sound and light controlled by the alarm IC.
Projects 20-21:	This uses the photoresistor with the space wantC.		Project 54:	Uses the alarm IC to control the space war IC.
Projects 22-26:	Uses the photoresistor and music IC to control the alarm IC siren sounds.		Project 58:	Uses the music IC to control the alarm IC, with additional control from the whistle chip and photoresistor. Also
Projects 27-31;	Uses the whistle chip and music IC to control the alarm IC siren sounds.			shows how some parts can be used as wires.
Projects 32-33:	Uses the whistle chip and music IC to control the space war IC.		Project 60:	Uses the alarm and space war ICs to control the motor.
Projects 34-35:	Uses the motor and music IC to control the space war IC.		Projects 61-65:	The alarm IC makes sound with the whistle chip; loudness is controlled by the photoresistor.
Projects 36-37:	Uses the motor and alarm IC to control the space war IC.		Project 66:	Uses the space war IC in a mind-reading game.

The whistle chip makes a sound like a dripping faucet; use the adjustable resistor to make it drip faster or slower. Although the sound may seem to be nearly continuous, the transistor is only activating for about 1/100 second for each drip.

Other Snap Circuits[®] using the transformer in an oscillator: 347-351, 399-408, 419-424, 447-452, and 458-465.

9-5 More About FM Radio

FM • 93 • 92 • 96 • 100 • 104 • 108 MHz

In sections 8-4 and 8-5 you learned about AM (Amplitude Modulation) and FM (Frequency Modulation) radio, and built some AM radio circuits. You may want to review hose sections now.

Introducing New Parts

Snap Circuits[®] includes an FM module which contains an integrated FM radio circuit. The inside looks like this:

Antenna Symbol

Its actual schematic looks like this:

This circuit is actually much more complex than it appears here, since it is built around an integrated radio circuit. A schematic of the circuitry within this part would be too large to show here, but this block diagram gives a summary of it:

Its Snap Circuits[®] connections are like this:

F	M [≈] .	
0	0	0
(–)	OUT	(+)

FM Module:

(+) - power from batteries

(–) - power return to batteries

T - tune up

R - reset

OUT - output connection

The antenna (Υ) is a loose wire that should always be left unconnected and spread out for best radio reception.

Consider this circuit (which is project 307, or a variation of it):

Turn on the switch (S1) and press the R button. The R button resets the frequency to 88MHz (the beginning of the FM band). Now press the T button and the FM module scans for an available radio station.

When a station is found, it locks on to it and you hear it on the speaker. Adjust the volume using the adjustable resistor (RV). Press the T button again for the next radio station. The module will scan up to 108MHz (the end of the FM band), and stop.

Snap Circuits[®] project 316 is a variant of this circuit without a volume adjustment. Project 306 is a variant of the AM radio circuits discussed in section 8-5.

9-6 When Wires Are Not Wire

In section 8-3 you learned that the AM antenna (Snap Circuits[®] part A1) has inductance due to its magnetic affects at AM radio frequencies, and that at low frequencies it acts like an ordinary wire. At FM radio frequencies (88-108MH2) a long wire has enough inductance to become an antenna, and one is used like this on the Snap Circuits[®] FM module.

The entire FM radio circuit comes as a complete module, instead of coming as individual parts that you could build and experiment with. This was necessary because at FM frequencies the snap wires connecting your parts on the base grid are long enough to have enough inductance to change the performance of the circuit. The output signal to the power amplifier IC (U4) is at much lower frequency (audio, 300-3000Hz).

At microwave frequencies (>1000MHz) circuit design becomes very complicated since every component or interconnection has some amount of capacitance and inductance. Components and the spaces between them must be as small as possible for circuits to perform properly.

If you don't have a compass, you can make one using metal paperclips. Slide two paperclips together, using their loops.

Hold the paperclips just above the electromagnet, without them touching the iron core rod. Press the switch and watch how the lower paperclip is attracted to the rod. It will point toward it like a compass.

Use the paperclips to pick up things.

Snap Circuits[®] includes some paperclips, use the electromagnet to pick up some. Release the switch to drop them.

Materials made of iron concentrate their magnetic effects at both ends. The center of the material is magnetically neutral because the attraction from each end is the same. The magnetic field created by the electromagnet works the same way. It is strongest at both ends but neutral in the center. But the electromagnet is hollow - so iron at one end will be sucked into the middle.

Use the same simple circuit but lay the electromagnet on its side with the iron core rod sticking out about halfway. Press the switch to see the rod get sucked into the center.

A lighter iron object will move better. Straighten out a paperclip, and bend it in half.

Place it on one side of the electromagnet and press the switch to see it sucked inside. Hold the switch and gently pull it out to see how much suction the electromagnet has.

Experiments

This circuit will use electromagnetism to defy gravity. Mount the electromagnet on the base grid using this circuit (which is project 664).

Add two more 1-snaps under the electromagnet to make it higher, and try it again.

You can also make your electromagnet tower shorter (one 1-snap on each side) and place the iron core rod under it. Then you can suspend the rod in mid-air.

Bend a paperclip as shown, and drop it into the electromagnet. Press the switch to suspend the paperclip in mid-air.

All of the preceding circuits used electricity to create magnetism. But most electricity is made using magnetism, by steam-driven generators in

power plants operated by your electric company. These spin a magnet to create a current in a wire.

Experiments

If you have a magnet available (Snap Circuits[®] does not include one), consider this mini-circuit:

Set the meter (M2) to the LOW (or 10mA) setting and place the iron core rod in the electromagnet. This circuit has no batteries and won't do anything by itself.

12-4 Electromagnetic Oscillators

Experiments

Snap Circuits[®] will now give you a more dramatic demonstration of how electricity can control magnetic fields in ways ordinary magnets can't Consider this circuit (which is project 669 or a variation of it):

Straighten and bend a paperclip as shown, and drop it into the electromagnet. Set the adjustable resistor (RV) control lever to the right, and the paperclip gets sucked into the electromagnet. Set the lever to the left and it falls. Now slowly slide the lever until you find a spot where the paperclip is bouncing up and down! Move your magnet up and down next to the electromagnet. The meter deflects to show that you created an electrical current in the circuit.

For another demonstration, replace the bent paperclip with the iron core rod. Slide two paperclips together using their loops and dangle one above the rod without touching it. Slide the adjustable resistor control lever around to see the lower paperclip vibrate as magnetic the field changes.

Consider this circuit (which is project 666):

Set the meter to the LOW (or 10mA) scale and drop a bent paperclip into the electromagnet. Move the adjustable resistor control lever to adjust the height of the paperclip above the table. The meter shows how the current changes as you adjust the paperclip height.

Experiments

Consider this circuit (which is project 683):

Connect the electromagnet to points A & B using the jumper wires. Hold the electromagnet one inch above the table and drop a bent paperclip into it. Slide the adjustable resistor control lever around and watch the paperclip vibrate. Covering the photoresistor (RP) stops the vibration. You can control the height and frequency of the vibration.

Replace the bent paperclip with the iron core rod. Slide two paperclips together using their loops and dangle one above the rod without touching it. Slide the adjustable resistor control lever around to see the lower paperclip vibrate as the magnetic field changes.

Other paperclip vibration circuits: 667, 668, and 670-682.

12-5 The Anti-Copacitor

Coils of wire like those in the electromagnet, antenna, transformer, relay, and motor can store electricity in a magnetic field. Electricity is needed to set up the magnetic field, and is released into the circuit when the magnetic field collapses. A coil of electricity is like a long garden hose – the water doesn't start or stop immediately when you turn the water on or off.

Coils store energy in a magnetic field while capacitors store energy as an electric charge across a material (an electric field). Coils and capacitors have opposite effects on a circuit, but it depends on their construction and the frequency.

Consider this circuit (which is project 535 in most manuals):

Turn on the slide switch (S1) and the familiar siren sound is badly distorted. The distortion occurs because the electromagnet opposes some of the siren frequencies more than others. You can test it with and without the iron core rod.

Now push the press switch (S2) and the siren sounds more normal. The $0.1\mu F$ capacitor counteracts the electromagnet effects.

Now use a jumper wire to connect points A & B, and test the effects using a different alarm sound. Then move the jumper wire to points B & C, then A & D.

Experiments

The electromagnet is a long wire wrapped in a coil. For constant or slowly changing voltages, its magnetic properties can be ignored and the resistance of the wire is about 25 ohms. Consider this circuit (which is project 658):

The iron core rod isn't needed, because the voltage changes slowly. Notice how lamp L2 takes longer to get bright while lamp L1 gets bright initially but becomes less bright as L2 turns on. Why?

Experiments

Consider this circuit (which is project 531 in most manuals):

Place the iron core rod in the electromagnet and turn the switch on and off. When the switch is turned off the energy from the electromagnet's magnetic field discharges through the LED.

If you remove the fron core rod then the LED will not flash as brightly, because less energy is stored in the magnetic field.

Snap Circuits[®] projects 530, 532, 533, and 534 are similar circuits showing that the antenna, transformer, and relay store energy in magnetic fields. Project 529 shows the fan blade storing energy as mechanical motion.

Incandescent lamps like these are made with a high-resistance filament that gets hot enough to glow. The current is higher when a lamp is cold than when the filament has heated up (and has more resistance). This is why bulbs only burn out when you first turn on the light.

Lamps L1 and L2 have low resistance at first because the filaments are cold. The resistance increases as the filaments heat up, and L1's filament heats up faster than L2's.

The resistance of the electromagnet lowers the current, so the filaments don't heat up as fast. Compare this circuit to project 152, which will turn on the lamps faster.

Snap Circuits[®] projects 656 and 657 are variations of project 658.

Here are some highlights from projects PC1-PC73:

Project PC1: Shows that a tone consists of one strong frequency and many multiples of it at lower amplitudes. It also shows that adding capacitance to an oscillator (lowering the tone of the sound) widens the spacing in oscilloscope mode and lowers the frequency spacing in FFT mode.

Projects PC4-PC7: Shows how the alarm IC makes different siren sounds by changing characteristics of the signal.

Project PC10: This is an example of modulation (see section 8-4) and filtering.

Project PC12: View the voice signal from a radio.

Project PC14: Shows what your voice looks like, and some sound patterns you can make.

Experiments

Use Winscope to take a closer look at this circuit (project 523, which you studied in section 10-1):

Place the fan on the motor and turn on the slide switch (S1). As the motor spins it connects/ disconnects sets of electrical contacts that keep the magnetic field from a coil spinning the shaft. This creates an electrical disturbance which crosses the transformer and moves the meter. Use the Winscope settings shown here to view the disturbance.

Push the press switch (S2) to connect the 470µF capacitor acress the motor. This filters out most of the disturbance, as you can see with Winscope (use the same settings).

Now change Winscope to FFT mode and change the norizontal scale to compare the frequency spectrum. Press the switch to add the capacitor. This filters out most of the high frequency energy

SUMMARY OF COMPONENTS (continued)					
Schematic Symbol	Part	Function	Quantity		
⊷⊘₊•	Meter	To measure how much current is flowing in a circuit.	1 SC-500R & SC-750R only		
₩.	Transformer	Inductor used to change the AC voltage without wasting power.	1 SC-500R & SC-750R only		
	FM Module	Module containing an FM receiver and amplifier circuit.	1 SC-500R & SC-750R only		
	Diode	Block current flow in one direction.	1 SC-500R & SC-750R only		
8	7-Segment	A group of seven LEDs that can display one letter or number.	1 SC-500R & SC-750R only		
	Recording IC	Module to record and play music or talking.	1 SC-500R & SC-750R only		
死	Relay	An electronic component that uses magnetism to open or close a mechanical switch.	1 SC-500R & SC-750R only		
*	SCR	A controlled diode used as an electronic switch.	1 SC-500R & SC-750R only		
•1	Solar Cell	Uses light to produce a voltage that can power a circuit.	1 SC-750R only		
•••••	Electromagnet	Inductor that acts like a magnet when a current flows through it.	1 SC-750R only		
- @ ~0000	Vibration Switch	Connect or disconnect power to a circuit when shaken.	1 SC-750R only		
	Two-spring Socket	Easy connection of other electrical components to Snap Circuits [®] .	1 SC-750R only		
	Computer Interface	View the electrical signals in a circuit.	1 SC-750R only		

Additional / replacement parts may be ordered at www.snapcircuits.net or by calling Elenco[®] at 847-541-3800.

DEFINITION OF TERMS (also see Summary of Components pages 132-134)

AC	Common abbreviation for alternating current.	Counter-Clockwise	Opposite the direction in which the hands of a clock
Alternating Current	A current that is constantly changing.	Current	rotate. A measure of how fast
АМ	Amplitude modulation. The amplitude of the radio signal is varied depending on the		electricity is flowing in a wire or how fast water is flowing in a pipe.
Ampere (A)	The unit of measure for	Diaphragm	direct current.
Amplify	To make larger	Diaphragin Digital Circuit	A wide range of circuits in
Amplitude	Strength or level of something		which all inputs and outputs
Analogy	A similarity in some ways		have only two states, such as
Anode	The side of a diode that current flows into.	Digital Electronics	Using a series of numbers to represent an electrical signal.
Antenna	Inductors used for sending or receiving radio signals.	Diode	An electronic device that allows current to flow in only
Audio	Electrical energy representing voice or music that can be heard by human ears.	Direct Current	A current that is constant and not changing.
Base	One of the connection points on a transistor.	Disc Capacitor	A type of capacitor that has low capacitance and is used
Battery	A device which uses a chemical reaction to create an		mostly in high frequency circuits.
	electric charge across a material.	Electric Charge	An electrical attraction/ repulsion between materials.
Blackout	When part of a city is cut off from the power plants supplying i with electricity	Electrical Power	A measure of how much energy is moving in a wire.
Capacitance	The ability to store electric charge.	Electricity	An attraction and repulsion between sub-atomic particles within a material.
Capacitor	An electrical component that can store electrical pressure (voltage) for periods of time.	Electrolytic Capacitor	A type of capacitor that has high capacitance and is used mostly in low frequency circuits.
Cathode	The side of a diode that current flows out of.	Electromagnetic	Involving both electrical and
Circuit	An arrangement of electrical components to do something.	Electronics	The science of electricity and
Clockwise	In the direction in which the hands of a clock rotate.	Emitter	its applications. One of the connection points
Coil	A wire that is wound in a spiral.	Farad, (F)	on a transistor. The unit of measure for
Collector	One of the connection points on a transistor.	Feedback	capacitance. To adjust the input to
Color Code	A method for marking resistors using colored bands.		something based on what its output is doing.
Conductor	A material that has low electrical resistance.	Filament	A high-resistance wire used in incandescent light bulbs.

DEFINITION OF TERMS (also see Summary of Components pages 132-134)

Pitch	The musical term for frequency.	Solder	A tin-lead metal that becomes a liquid when heated to above
Polarity	Markings indicating which direction a device is positioned in, usually (+) and (–).		500°F. It makes a strong mounting that can withstand shocks.
Printed Circuit Board	A board used for mounting electrical components.	Speaker	A device which converts electrical energy into sound.
	Components are connected using metal traces "printed" on the board instead of wires.	Static Electricity	A naturally occurring build-up of electrical charge between materials, usually at high
Receiver	The device which is receiving a message (usually with radio).	Switch	A device to connect ("closed" or "on") or disconnect ("open"
Resistance	The electrical friction between an electric current and the material it is flowing through.	Transformer	or "off") wires in an electric circuit. A device which uses coils to
Resistor	Components used to control the flow of electricity in a circuit.		change the AC voltage and current (increasing one while decreasing the other).
Schematic	A drawing of an electrical circuit that uses symbols for all the components.	Transistor	An electronic device that uses a small amount of current to control a large amount of current.
Semiconductor	A material that has more resistance than conductors but less than insulators. It is	Transmitter	The device which is sending a message (usually with radio).
	used to construct diodes, transistors, and integrated	Tungsten	A highly resistive material used in light bulbs.
Series Circuit	When electrical components are connected one after the	Tuning Capacitor	A capacitor whose value is varied by rotating conductive plates over a dielectric.
Short Circuit	other. When wires from different parts of a pircuit (or different	Voltage	A measure of how strong an electric charge difference between materials is.
	circuits) connect accidentally.	Volts (V)	The unit of measure for voltage.
Silicon	The chemical element most commonly used as a semiconductor.	Watt (W)	The unit measure for electrical power.

FOR FURTHER READING (all of these are available through Elenco^o Electronics, Inc.)

Basic Electricity, 736 pages, ISBN 0-7906-1041-8, Sams 61041
Basic Electricity & DC Circuits, 928 pages, ISBN 0-7906-1072-8, Sams 61072
Basic Solid-State Electronics, 944 pages, ISBN 0-7906-1042-6, Sams 61042
Beginning Electronics Through Projects, 236 pages, ISBN 0-7506-9898-5, Sams 67102
Modern Electronics Soldering Techniques, 304 pages, ISBN 0-7906-1199-6, Sams 61199
Schematic Diagrams, 196 pages, ISBN 0-7906-1059-0, Sams 61059

