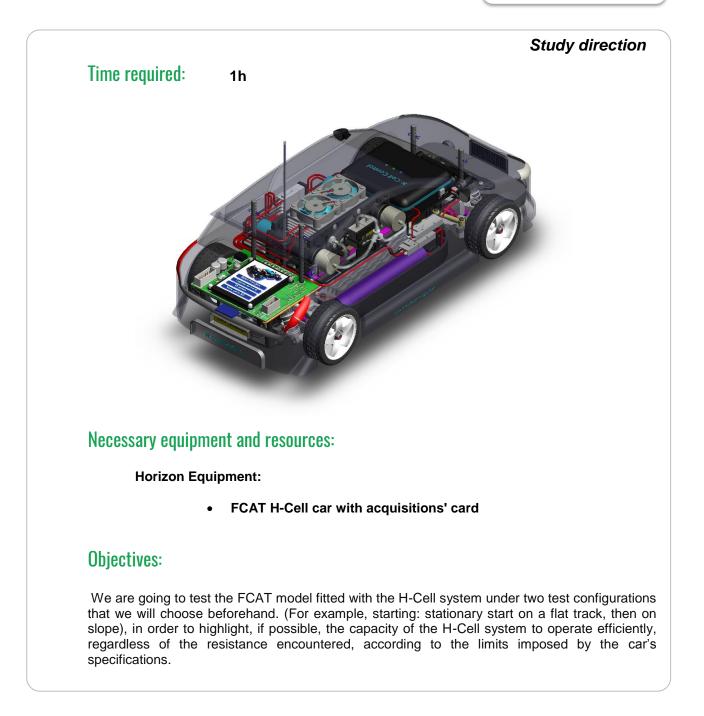


5 – Manufacturer's decisions

Does the current hybrid solution of the H-Cell system seem entirely logical, given the required performance and sustainable development considerations?

5.1 Making measurements on the track
)"&`AU_]b[`aYUgifYaYbhg`cb`h\Y`W{Uf[]b[`VYbW{`"pg.`5
) " [·] 9bYf[mWcbgi a dh]cb [·] """"""""""""""""""""""""""""""
) '([`] Gi gl⁄JjbUV`Y`XYj Y`cda Ybh



HORIZON CENERGY

5 – Manufacturer's decisions

Does the current hybrid solution of the H-Cell system seem entirely logical, given the required performance and sustainable development considerations? 5.1 Making measurements on the track

H₂ Hybrid Fuel Cell Automotive Trainer

HORIZON CENERGY

Time required: 30 min

Comparative propulsion tests

5.1.1


0:05

Instructions:

Compare, using your equipment and track (max slope: 15 degrees) the two testing modes under different conditions, either in the driving speed, or in the nature of the terrain (hard-packed soil, asphalt or concrete). For this purpose, acquire the data by transfer from the SD card*.

Assemble the results in a spreadsheet and complete the results sheet on page 4.

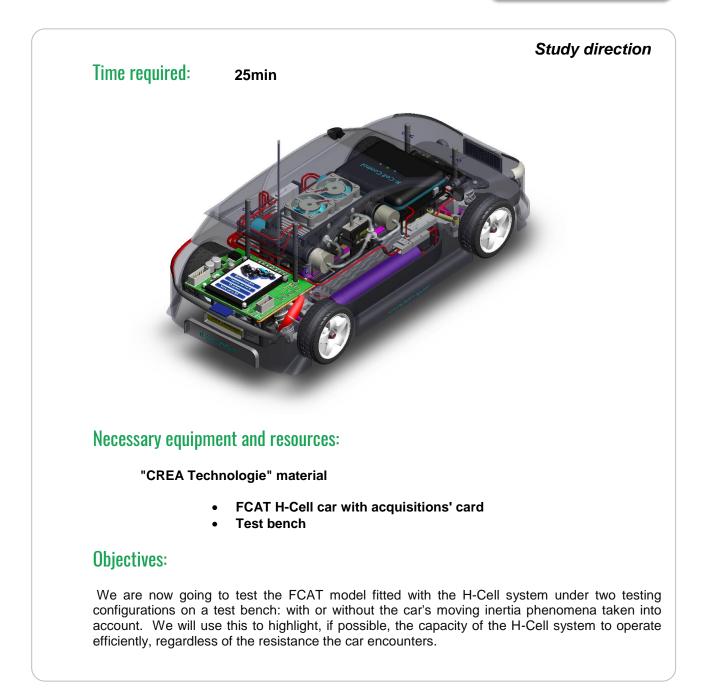
*If the tests are impossible because of the weather or inadequate equipment, you may use an example of test in the "Example tests 5-1" folder

Question:

Draw your conclusions as to the level of satisfaction for the hybrid solution offered by the manufacturer, considering the various points mentioned in the above table.

	Grade*	Comments
Performance in terms of speed		
Performance in terms of running time		
Size of the on-board system		
Environmental impact		
*Satisfac	tion index grades:	0: not satisfied/1: slightly satisfied/2: satisfied/3: very satisfied

Results sheet for the o	comparison between the two prop	ulsion testing modes				
	Test 1	Test 2				
Further information about the ground chosen for the test						
(concrete, asphalt, hardwood floor, carpeting, etc.)						
Further information about the rate of propulsion imposed to the car by the pilot						
(constant high or low speed, maximum or moderate acceleration, etc.)						
On flat ground	I average consumed by the engine					
	l average, provided by th	e battery to the controller				
	I average, provided by the	e fuel cell to the controller				
	I average, provided by t	he fuel cell to the battery				
	I average consun	ned by the engine				
On a⁻-degree slope						
	I average, provided by th	e battery to the controller				
	I average, provided by the	e fuel cell to the controller				
	Laverage provided by t	he fuel cell to the battery				
Result		power supply to the propulsion ollowing cases:				
result						
	The fuel cell alone charges the	battery in the following cases:				



HORIZON CENERGY

5 – Manufacturer's decisions

Does the current hybrid solution of the H-Cell system seem entirely logical, given the required performance and sustainable development considerations? 5.2 Making measurements on the charging bench

H₂ Hybrid Fuel Cell Automotive Trainer

HORIZON CENERGY

Time required: 15 min

Comparative propulsion tests

5.2.1

Instructions:

Advanced Lab

Compare, on a test bench, the two testing modes under different conditions, as described below.

Then record the results in a spreadsheet and complete the results sheet below.

Results sheet for the compare	rison between the two propulsion f	testing modes on a test bench
	Test 1:	Test 2:
	start without equivalent inertia flywheels	start with equivalent inertia flywheels
	I average consum	ned by the engine
Comparison		
	I average, provided by th	e battery to the controller
	I average, provided by the	e fuel cell to the controller
	I average, provided by t	he fuel cell to the battery
Result		power supply to the propulsion ollowing cases:
	The fuel cell alone charges the	battery in the following cases:

5.2.2

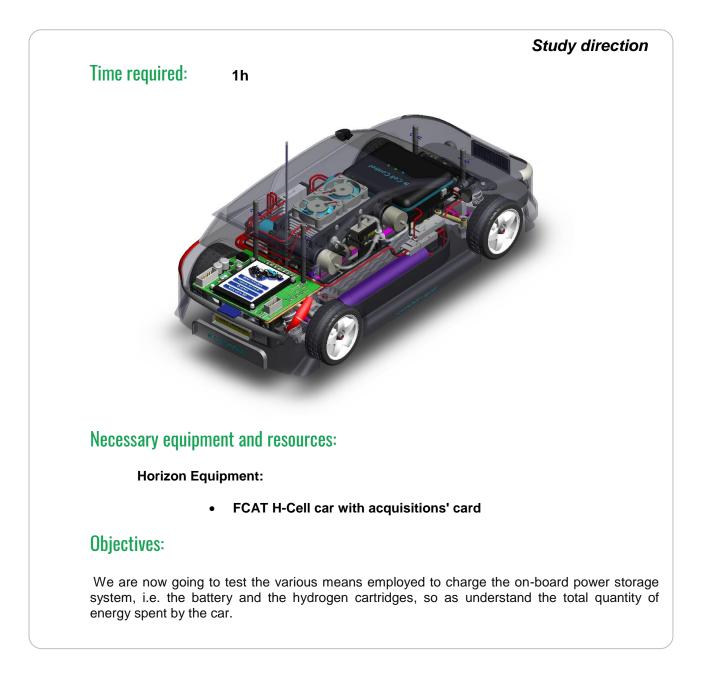
Time required: 10 min Satisfaction index

0:10

Question:

Draw your conclusions as to the level of satisfaction for the hybrid solution offered by the manufacturer, considering the various points mentioned in the above table.

	Grade*	Comments		
Capacity of the fuel cell alone to enable the car to start				
Impact of the mass of the H-Cell system on energy consumption during the starting phase.				
Environmental impact				
*Satisfaction index grades: 0: not satisfied/1: slightly satisfied/2: satisfied/3: very satisfied				

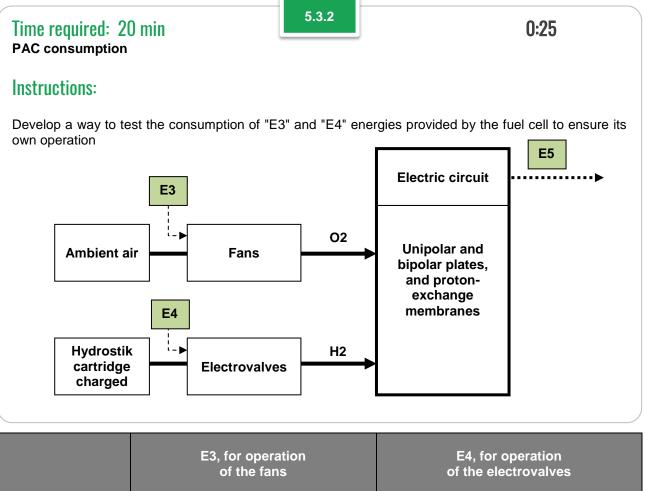


HORIZON CHERGY

5 – Manufacturer's decisions

Does the current hybrid solution of the H-Cell system seem entirely logical, given the required performance and sustainable development considerations? 5.3 Energy consumption

5.3.1 Time required: 20 min 0:05 Text Instructions: Developing a testing device for energy consumption "E1", taken from the EDF network, concerning: The hydrogen cartridge charging system **E1** H2 **Hydrostik** E2 Hydrofill cartridge station to charge H_2O The battery charging system **E1** E2 Electrons Battery Battery charger to charge


	Charging system for hydrogen cartridges	Charging system for the accumulator
E1		
Total energy	E	_{charge} =

HORIZON CENERGY

	of the fans	of the electrovalves
Energy required for the operation of PAC		
Total energy	E PAC o	operation =

5.3.3

Time required: 20 min Consumption of the control unit

Instructions:

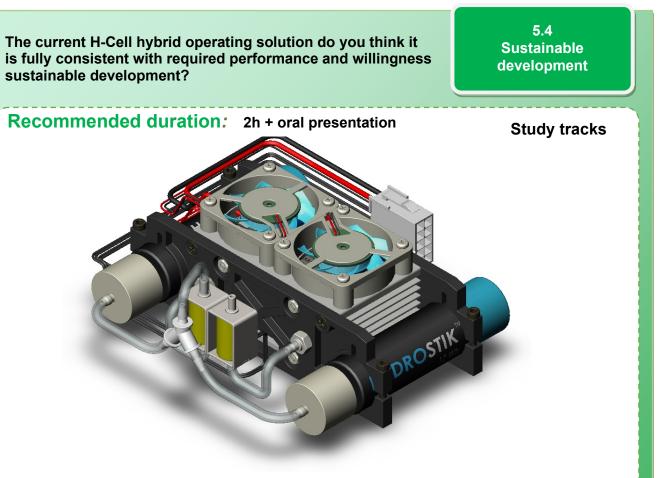
To develop a device to test the consumption of "E6" energy provided by the battery to power the control unit.

E command unit supply =

0:25

	5.0.4	
Time required: 15 min Result	5.3.4	0:45

Question:

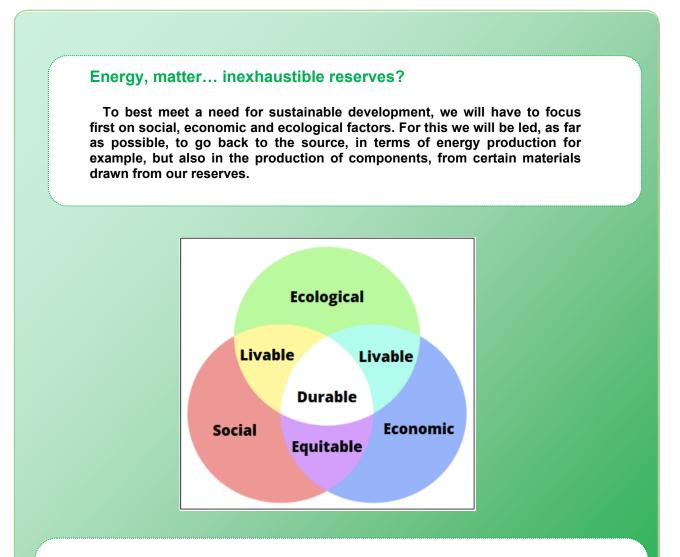

Create an overall report about the magnitude of the various amounts of energy consumed to charge or operate the hybrid system, and give your opinion, using a satisfaction index, about the efficiency of the equipment.

5 - the manufacturer's choice

Equipment and resources required:

Material «Horizon Educational» :

• Fuel cell


Global operating mode:

We are going to focus more specifically here on the internal structure of various elements that make up the fuel cell, in order to establish a global critique on various social, economic or ecological impacts arising from certain technological choices. We will also examine the different modes of hydrogen production by electrolysis of water, within the framework of sustainable development.

Go back to the source, just to preserve it...

One of the most important issues today for our future:

It is therefore a question here of producing, storing, restoring energy, while preserving our environment as well as possible. This will then go through the most judicious choice of technologies and raw materials to best guarantee us "inexhaustible" durability. Even if it seems to be impossible even today, it is good for the future of our planet a real challenge to challenge.

H, Hybrid Fuel Cell Automotive Trainer

A few tips, before we start...

We will study here two very distinct zones, which could possibly be assigned to two working groups:

Zone 1: Hydrogen production by electrolysis of water

Zone 2: The constitution of the fuel cell

It will then be necessary to carry out research at first, mainly on the Internet, for a period of 1 hour, during which you will be asked to take a record of the keywords used, the sites selected, and the main indications that you have could find there.

Some sites will be written on this subject in a foreign language (mainly in English) and will sometimes contain definitions that are part of the physics-chemistry program. In this case, it could be interesting to have yourself supervised by teachers specialized in these fields.

Regarding the restitution of your work, it would be interesting to practice it orally, in English or a foreign language, in the form of a mini presentation. The response documents then serve in this case as accompanying documents.

Instructions:

- Consult the documents provided in the appendix, then complete, depending on your study area, the response tables on pages 4 to 6.

- Specify on pages 5 and 9 the keywords used for your Internet searches, the sites selected, and the indications that you have used.

- Also write, if possible in a foreign language, on pages 6 and 10, a text summarizing your point of view on the subjects treated.

Zone 1: Hydrogen recharge by electrolysis of water (from table on page 12)

	Main solutions						
		Based on social factors *	Bases on economical factors*	Bases on ecological factors*			
Electric power generation system for electrolysis							

* Social factors: satisfying the user's need - safety, comfort Economic factors: low cost Ecological factors: non-polluting

Zone 1: Hydrogen recharge by electrolysis of water / Internet research Key words **Selected websites** Indications used

Zone 1: Hydrogen recharge by electrolysis of water

In summary :

 $\begin{array}{c} \textbf{Copyright} @ All Rights Reserved to Horizon Fuel Cell Europe \\ This content should not be copied, translated or distributed in any manner. \end{array}$

			Indices * of satisfaction concerning the sustainability of development, linked to the manufacture, use and end of life of constituents					
		Based on social factors*	Based on economical factors*	Based on ecological factors*				
Fuel Cell	Bipolar plates							
	Proton exchange membranes							
	Ventilators							
	Solenoid valves							
Hydrostik	Lanthanum- nickel hydrides							

* Social factors: satisfying the user's need - safety, comfort Economic factors: low cost Ecological factors: non-polluting

Zone 2: Opportunities for improvement proposal Component Evolution In what way? (suggest improvements) possibility? **Bipolar plates** YES NO YES **Proton exchange** membranes NO YES Ventilators NO **Solenoid valves** YES NO Metal hydride YES NO

Zone 2: Constitution of a PEMFC fuel cell / Internet research				
Key words				
Selected websites				
Indications used				

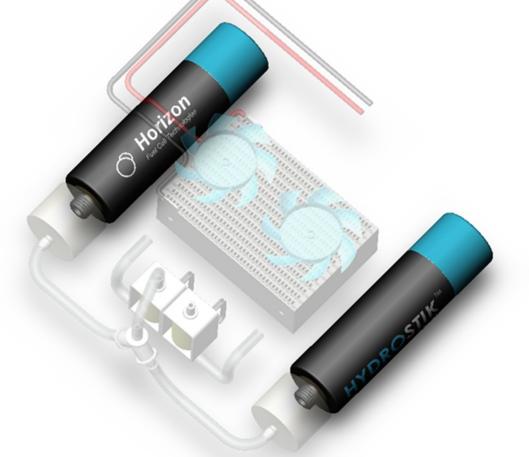
Zone 2: Constitution of a PEMFC fuel cell

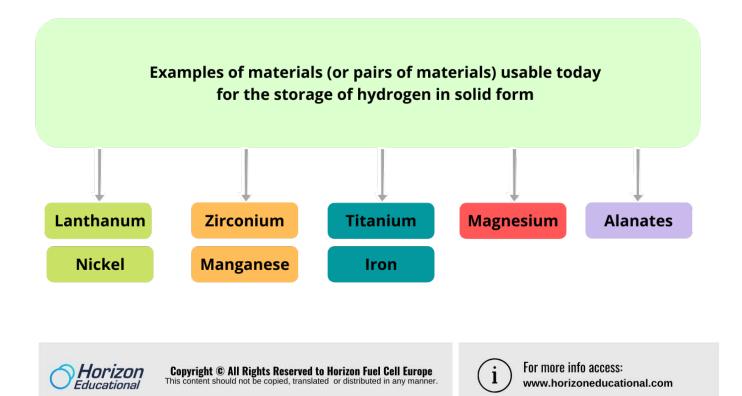
In summary :

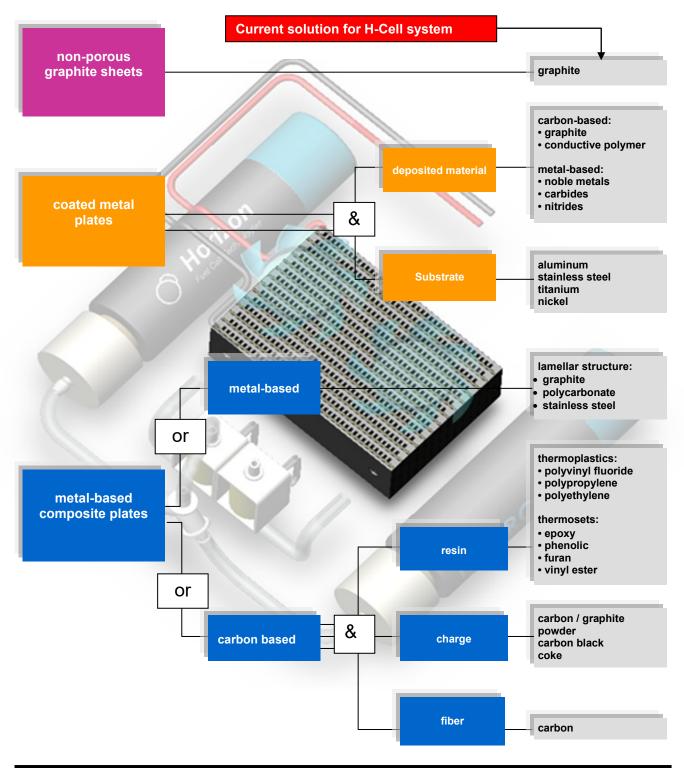
Resource documents

1 - How to produce hydrogen? ... and for what purpose?

	Renewable energy									
Charcoal	Natural gas				ovoltaic olar	Hyd	lroelectricity	Wind turbine	Nuclear power	Thermal nuclear
		Biomass Solar thermal		Biomass Solar						
	H2									
	demand									
Hydrogen	Fuel Cell Turbine					Turbine	es, Pro	ocesses,		
motor	Electric motor	Commerci	Commercial Residential Tertiary Poly- generation motors					, syn	theses,	
Transports Buildings						Indus	try			






2 - What type of material should be chosen for storage by absorption or adsorption within a cartridge?

3 - What materials should be chosen for bipolar plates?

4 - What materials should be chosen for proton membranes?

- Current version: Nafion (polymer produced by Dupont de Nemours)
- In research: Chitosan-Zeolite (see also Chitin and Zeolite)

Copyright © All Rights Reserved to Horizon Fuel Cell Europe This content should not be copied, translated or distributed in any manner.

For more info access: www.horizoneducational.com